Department of Medicine Works

Permanent URI for this collection

Browse

Recent Submissions

Now showing 1 - 10 of 3084
  • Item
    Assessment of electromechanically stimulated bone marrow stem cells seeded acellular cardiac patch in a rat myocardial infarct model
    (IOPP, 2021) Öztürk, Şükrü; Shahbazi, Reza; Zeybek, Naciye Dilara; Kurum, Barıs; Gultekinoglu, Merve; Aksoy, Eda Ayse; Demircin, Metin; Ulubayram, Kezban; Medicine, School of Medicine
    In this study, we evaluated cardiomyogenic differentiation of electromechanically stimulated rat bone marrow-derived stem cells (rt-BMSCs) on an acellular bovine pericardium (aBP) and we looked at the functioning of this engineered patch in a rat myocardial infarct (MI) model. aBP was prepared using a detergent-based decellularization procedure followed by rt-BMSCs seeding, and electrical, mechanical, or electromechanical stimulations (3 millisecond pulses of 5 V cm-1at 1 Hz, 5% stretching) to enhance cardiomyogenic differentiation. Furthermore, the electromechanically stimulated patch was applied to the MI region over 3 weeks. After this period, the retrieved patch and infarct region were evaluated for the presence of calcification, inflammatory reaction (CD68), patch to host tissue cell migration, and structural sarcomere protein expressions. In conjunction with any sign of calcification, a higher number of BrdU-labelled cells, and a low level of CD68 positive cells were observed in the infarct region under electromechanically stimulated conditions compared with static conditions. More importantly, MHC, SAC, Troponin T, and N-cad positive cells were observed in both infarct region, and retrieved engineered patch after 3 weeks. In a clear alignment with other results, our developed acellular patch promoted the expression of cardiomyogenic differentiation factors under electromechanical stimulation. Our engineered patch showed a successful integration with the host tissue followed by the cell migration to the infarct region.
  • Item
    Constitutive activation of MEK5 promotes a mesenchymal and migratory cell phenotype in triple negative breast cancer
    (Impact Journals, 2021-05-18) Matossian, Margarite D.; Hoang, Van T.; Burks, Hope E.; La, Jacqueline; Elliott, Steven; Brock, Courtney; Rusch, Douglas B.; Buechlein, Aaron; Nephew, Kenneth P.; Bhatt, Akshita; Cavanaugh, Jane E.; Flaherty, Patrick T.; Collins-Burow, Bridgette M.; Burow, Matthew E.; Medicine, School of Medicine
    Triple negative breast cancer (TNBC) is an aggressive subtype of breast cancer with limited targeted therapeutic options. A defining feature of TNBC is the propensity to metastasize and acquire resistance to cytotoxic agents. Mitogen activated protein kinase (MAPK) and extracellular regulated kinase (ERK) signaling pathways have integral roles in cancer development and progression. While MEK5/ERK5 signaling drives mesenchymal and migratory cell phenotypes in breast cancer, the specific mechanisms underlying these actions remain under-characterized. To elucidate the mechanisms through which MEK5 regulates the mesenchymal and migratory phenotype, we generated stably transfected constitutively active MEK5 (MEK5-ca) TNBC cells. Downstream signaling pathways and candidate targets of MEK5-ca cells were based on RNA sequencing and confirmed using qPCR and Western blot analyses. MEK5 activation drove a mesenchymal cell phenotype independent of cell proliferation effects. Transwell migration assays demonstrated MEK5 activation significantly increased breast cancer cell migration. In this study, we provide supporting evidence that MEK5 functions through FRA-1 to regulate the mesenchymal and migratory phenotype in TNBC.
  • Item
    Acceptability of a complex team-based quality improvement intervention for transient ischemic attack: a mixed-methods study
    (BMC, 2021-05-12) Damush, Teresa M.; Penney, Lauren S.; Miech, Edward J.; Rattray, Nicholas A.; Baird, Sean A.; Cheatham, Ariel J.; Austin, Charles; Sexson, Ali; Myers, Laura J.; Bravata, Dawn M.; Medicine, School of Medicine
    Background: The Protocol-guided Rapid Evaluation of Veterans Experiencing New Transient Neurologic Symptoms (PREVENT) program was a complex quality improvement (QI) intervention targeting transient ischemic attack (TIA) evidence-based care. The aim of this study was to evaluate program acceptability among the QI teams and factors associated with degrees of acceptability. Methods: QI teams from six Veterans Administration facilities participated in active implementation for a one-year period. We employed a mixed methods study to evaluate program acceptability. Multiple data sources were collected over implementation phases and triangulated for this evaluation. First, we conducted 30 onsite, semi-structured interviews during active implementation with 35 participants at 6 months; 27 interviews with 28 participants at 12 months; and 19 participants during program sustainment. Second, we conducted debriefing meetings after onsite visits and monthly virtual collaborative calls. All interviews and debriefings were audiotaped, transcribed, and de-identified. De-identified files were qualitatively coded and analyzed for common themes and acceptability patterns. We conducted mixed-methods matrix analyses comparing acceptability by satisfaction ratings and by the Theoretical Framework of Acceptability (TFA). Results: Overall, the QI teams reported the PREVENT program was acceptable. The clinical champions reported high acceptability of the PREVENT program. At pre-implementation phase, reviewing quality data, team brainstorming solutions and development of action plans were rated as most useful during the team kickoff meetings. Program acceptability perceptions varied over time across active implementation and after teams accomplished actions plans and moved into sustainment. We observed team acceptability growth over a year of active implementation in concert with the QI team's self-efficacy to improve quality of care. Guided by the TFA, the QI teams' acceptability was represented by the respective seven components of the multifaceted acceptability construct. Conclusions: Program acceptability varied by time, by champion role on QI team, by team self-efficacy, and by perceived effectiveness to improve quality of care aligned with the TFA. A complex quality improvement program that fostered flexibility in local adaptation and supported users with access to data, resources, and implementation strategies was deemed acceptable and appropriate by front-line clinicians implementing practice changes in a large, national healthcare organization.
  • Item
    Allelic decomposition and exact genotyping of highly polymorphic and structurally variant genes
    (Springer Nature, 2018-02-26) Numanagić, Ibrahim; Malikić, Salem; Ford, Michael; Qin, Xiang; Toji, Lorraine; Radovich, Milan; Skaar, Todd C.; Pratt, Victoria M.; Berger, Bonnie; Scherer, Steve; Sahinalp, S. Cenk; Medicine, School of Medicine
    High-throughput sequencing provides the means to determine the allelic decomposition for any gene of interest-the number of copies and the exact sequence content of each copy of a gene. Although many clinically and functionally important genes are highly polymorphic and have undergone structural alterations, no high-throughput sequencing data analysis tool has yet been designed to effectively solve the full allelic decomposition problem. Here we introduce a combinatorial optimization framework that successfully resolves this challenging problem, including for genes with structural alterations. We provide an associated computational tool Aldy that performs allelic decomposition of highly polymorphic, multi-copy genes through using whole or targeted genome sequencing data. For a large diverse sequencing data set, Aldy identifies multiple rare and novel alleles for several important pharmacogenes, significantly improving upon the accuracy and utility of current genotyping assays. As more data sets become available, we expect Aldy to become an essential component of genotyping toolkits.
  • Item
    Rifampin Regulation of Drug Transporters Gene Expression and the Association of MicroRNAs in Human Hepatocytes
    (Frontiers Media, 2016-04-26) Benson, Eric A.; Eadon, Michael T.; Desta, Zeruesenay; Liu, Yunlong; Lin, Hai; Burgess, Kimberly S.; Segar, Matthew W.; Gaedigk, Andrea; Skaar, Todd C.; Medicine, School of Medicine
    Membrane drug transporters contribute to the disposition of many drugs. In human liver, drug transport is controlled by two main superfamilies of transporters, the solute carrier transporters (SLC) and the ATP Binding Cassette transporters (ABC). Altered expression of these transporters due to drug-drug interactions can contribute to differences in drug exposure and possibly effect. In this study, we determined the effect of rifampin on gene expression of hundreds of membrane transporters along with all clinically relevant drug transporters. Methods: In this study, primary human hepatocytes (n = 7 donors) were cultured and treated for 24 h with rifampin and vehicle control. RNA was isolated from the hepatocytes, mRNA expression was measured by RNA-seq, and miRNA expression was analyzed by Taqman OpenArray. The effect of rifampin on the expression of selected transporters was also tested in kidney cell lines. The impact of rifampin on the expression of 410 transporter genes from 19 different transporter gene families was compared with vehicle control. Results: Expression patterns of 12 clinically relevant drug transporter genes were changed by rifampin (FDR < 0.05). For example, the expressions of ABCC2, ABCB1, and ABCC3 were increased 1.9-, 1.7-, and 1.2-fold, respectively. The effects of rifampin on four uptake drug transporters (SLCO1B3, SLC47A1, SLC29A1, SLC22A9) were negatively correlated with the rifampin effects on specific microRNA expression (SLCO1B3/miR-92a, SLC47A1/miR-95, SLC29A1/miR-30d#, and SLC22A9/miR-20; r < -0.79; p < 0.05). Seven hepatic drug transporter genes (SLC22A1, SLC22A5, SLC15A1, SLC29A1, SLCO4C1, ABCC2, and ABCC4), whose expression was altered by rifampin in hepatocytes, were also present in a renal proximal tubular cell line, but in renal cells rifampin did not alter their gene expression. PXR expression was very low in the kidney cells; this may explain why rifampin induces gene expression in a tissue-specific manner. Conclusion: Rifampin alters the expression of many of the clinically relevant hepatic drug transporters, which may provide a rational basis for understanding rifampin-induced drug-drug interactions reported in vivo. The relevance of its effect on many other transporters remains to be studied.
  • Item
    High-Throughput Assays to Assess the Functional Impact of Genetic Variants: A Road Towards Genomic-Driven Medicine
    (Wiley, 2017-03) Ipe, J.; Swart, M.; Burgess, K.S.; Skaar, T.C.; Medicine, School of Medicine
  • Item
    Variable Aromatase Inhibitor Plasma Concentrations Do Not Correlate with Circulating Estrogen Concentrations in Post-Menopausal Breast Cancer Patients
    (SpringerLink, 2017-10) Hertz, Daniel L.; Speth, Kelly A.; Kidwell, Kelley M.; Gersch, Christina L.; Desta, Zeruesenay; Storniolo, Anna Maria; Stearns, Vered; Skaar, Todd C.; Hayes, Daniel F.; Henry, N. Lynn; Rae, James M.; Medicine, School of Medicine
    Purpose: The aromatase inhibitors (AI) exemestane (EXE), letrozole (LET), and anastrozole suppress estrogen biosynthesis, and are effective treatments for estrogen receptor (ER)-positive breast cancer. Prior work suggests that anastrozole blood concentrations are associated with the magnitude of estrogen suppression. The objective of this study was to determine whether the magnitude of estrogen suppression, as determined by plasma estradiol (E2) concentrations, in EXE or LET treated patients is associated with plasma AI concentrations. Methods: Five hundred post-menopausal women with ER-positive breast cancer were enrolled in the prospective Exemestane and Letrozole Pharmacogenetic (ELPh) Study conducted by the COnsortium on BReast cancer phArmacogomics (COBRA) and randomly assigned to either drug. Estrogen concentrations were measured at baseline and after 3 months of AI treatment and drug concentrations were measured after 1 or 3 months. EXE or LET concentrations were compared with 3-month E2 concentration or the change from baseline to 3 months using several complementary statistical procedures. Results: Four-hundred patients with on-treatment E2 and AI concentrations were evaluable (EXE n = 200, LET n = 200). Thirty (7.6%) patients (EXE n = 13, LET n = 17) had 3-month E2 concentrations above the lower limit of quantification (LLOQ) (median: 4.75; range: 1.42-63.8 pg/mL). EXE and LET concentrations were not associated with on-treatment E2 concentrations or changes in E2 concentrations from baseline (all p > 0.05). Conclusions: Steady-state plasma AI concentrations do not explain variability in E2 suppression in post-menopausal women receiving EXE or LET therapy, in contrast with prior evidence in anastrozole treated patients.
  • Item
    Associations between genetic variants and the effect of letrozole and exemestane on bone mass and bone turnover
    (SpringerLink, 2015-11) Oesterreich, Steffi; Henry, N. Lynn; Kidwell, Kelley M.; Van Poznak, Catherine H.; Skaar, Todd C.; Dantzer, Jessica; Li, Lang; Hangartner, Thomas N.; Peacock, Munro; Nguyen, Anne T.; Rae, James M.; Desta, Zeruesenay; Philips, Santosh; Storniolo, Anna M.; Stearns, Vered; Hayes, Daniel F.; Flockhart, David A.; Medicine, School of Medicine
    Adjuvant therapy for hormone receptor (HR) positive postmenopausal breast cancer patients includes aromatase inhibitors (AI). While both the non-steroidal AI letrozole and the steroidal AI exemestane decrease serum estrogen concentrations, there is evidence that exemestane may be less detrimental to bone. We hypothesized that single nucleotide polymorphisms (SNP) predict effects of AIs on bone turnover. Early stage HR-positive breast cancer patients were enrolled in a randomized trial of exemestane versus letrozole. Effects of AI on bone mineral density (BMD) and bone turnover markers (BTM), and associations between SNPs in 24 candidate genes and changes in BMD or BTM were determined. Of the 503 enrolled patients, paired BMD data were available for 123 and 101 patients treated with letrozole and exemestane, respectively, and paired BTM data were available for 175 and 173 patients, respectively. The mean change in lumbar spine BMD was significantly greater for letrozole-treated (-3.2 %) compared to exemestane-treated patients (-1.0 %) (p = 0.0016). Urine N-telopeptide was significantly increased in patients treated with exemestane (p = 0.001) but not letrozole. Two SNPs (rs4870061 and rs9322335) in ESR1 and one SNP (rs10140457) in ESR2 were associated with decreased BMD in letrozole-treated patients. In the exemestane-treated patients, SNPs in ESR1 (Rs2813543) and CYP19A1 (Rs6493497) were associated with decreased bone density. Exemestane had a less negative impact on bone density compared to letrozole, and the effects of AI therapy on bone may be impacted by genetic variants in the ER pathway.
  • Item
    CYP2D6 Genotype is Not Associated with Survival in Breast Cancer Patients Treated with Tamoxifen: Results from a Population-based Study
    (SpringerLink, 2017-11) Hertz, D.L.; Kidwell, K.M.; Hilsenbeck, S.G.; Oesterreich, S.; Philips, S.; Chenault, C.; Hartmaier, R.J.; Skaar, T.C.; Sikora, M.J.; Rae, J.M.; Medicine, School of Medicine
    Purpose: A number of studies have tested the hypothesis that breast cancer patients with low-activity CYP2D6 genotypes achieve inferior benefit from tamoxifen treatment, putatively due to lack of metabolic activation to endoxifen. Studies have provided conflicting data, and meta-analyses suggest a small but significant increase in cancer recurrence, necessitating additional studies to allow for accurate effect assessment. We conducted a retrospective pharmacogenomic analysis of a prospectively collected community-based cohort of patients with estrogen receptor-positive breast cancer to test for associations between low-activity CYP2D6 genotype and disease outcome in 500 patients treated with adjuvant tamoxifen monotherapy and 500 who did not receive any systemic adjuvant therapy. Methods: Tumor-derived DNA was genotyped for common, functionally consequential CYP2D6 polymorphisms (*2, *3, *4, *6, *10, *41, and copy number variants) and assigned a CYP2D6 activity score (AS) ranging from none (0) to full (2). Patients with poor metabolizer (AS = 0) phenotype were compared to patients with AS > 0 and in secondary analyses AS was analyzed quantitatively. Clinical outcome of interest was recurrence free survival (RFS) and analyses using long-rank test were adjusted for relevant clinical covariates (nodal status, tumor size, etc.). Results: CYP2D6 AS was not associated with RFS in tamoxifen treated patients in univariate analyses (p > 0.2). In adjusted analyses, increasing AS was associated with inferior RFS (Hazard ratio 1.43, 95% confidence interval 1.00-2.04, p = 0.05). In patients that did not receive tamoxifen treatment, increasing CYP2D6 AS, and AS > 0, were associated with superior RFS (each p = 0.0015). Conclusions: This population-based study does not support the hypothesis that patients with diminished CYP2D6 activity achieve inferior tamoxifen benefit. These contradictory findings suggest that the association between CYP2D6 genotype and tamoxifen treatment efficacy is null or near null, and unlikely to be useful in clinical practice.
  • Item
    Association of Variants in Candidate Genes with Lipid Profiles in Women with Early Breast Cancer on Adjuvant Aromatase Inhibitor Therapy
    (American Association for Cancer Research, 2016-03-15) Santa-Maria, Cesar A.; Blackford, Amanda; Nguyen, Anne T.; Skaar, Todd C.; Philips, Santosh; Oesterreich, Steffi; Rae, James M.; Desta, Zeruesenay; Robarge, Jason; Henry, Norah Lynn; Storniolo, Anna M.; Hayes, Daniel F.; Blumenthal, Roger S.; Ouyang, Pamela; Post, Wendy S.; Flockhart, David A.; Stearns, Vered; Medicine, School of Medicine
    Purpose: Aromatase inhibitors can exert unfavorable effects on lipid profiles; however, previous studies have reported inconsistent results. We describe the association of single-nucleotide polymorphisms (SNP) in candidate genes with lipid profiles in women treated with adjuvant aromatase inhibitors. Experimental design: We conducted a prospective observational study to test the associations between SNPs in candidate genes in estrogen signaling and aromatase inhibitor metabolism pathways with fasting lipid profiles during the first 3 months of aromatase inhibitor therapy in postmenopausal women with early breast cancer randomized to adjuvant letrozole or exemestane. We performed genetic association analysis and multivariable linear regressions using dominant, recessive, and additive models. Results: A total of 303 women had complete genetic and lipid data and were evaluable for analysis. In letrozole-treated patients, SNPs in CYP19A1, including rs4646, rs10046, rs700518, rs749292, rs2289106, rs3759811, and rs4775936 were significantly associated with decreases in triglycerides by 20.2 mg/dL and 39.3 mg/dL (P < 0.00053), respectively, and with variable changes in high-density lipoprotein (HDL-C) from decreases by 4.2 mg/dL to increases by 9.8 mg/dL (P < 0.00053). Conclusions: Variants in CYP19A1 are associated with decreases in triglycerides and variable changes in HDL-C in postmenopausal women on adjuvant aromatase inhibitors. Future studies are needed to validate these findings, and to identify breast cancer survivors who are at higher risk for cardiovascular disease with aromatase inhibitor therapy.