- Department of BioHealth Informatics Works
Department of BioHealth Informatics Works
Permanent URI for this collection
Browse
Recent Submissions
Item From Dyadic Ties to Information Infrastructures: Care-Coordination between Patients, Providers, Students and Researchers(Thieme, 2015-08-13) Purkayastha, S.; Price, A.; Biswas, R.; Jai Ganesh, A.U.; Otero, P.; BioHealth Informatics, School of Informatics and ComputingObjective: To share how an effectual merging of local and online networks in low resource regions can supplement and strengthen the local practice of patient centered care through the use of an online digital infrastructure powered by all stakeholders in healthcare. User Driven Health Care offers the dynamic integration of patient values and evidence based solutions for improved medical communication in medical care. Introduction: This paper conceptualizes patient care-coordination through the lens of engaged stakeholders using digital infrastructures tools to integrate information technology. We distinguish this lens from the prevalent conceptualization of dyadic ties between clinician-patient, patient-nurse, clinician-nurse, and offer the holistic integration of all stakeholder inputs, in the clinic and augmented by online communication in a multi-national setting. Methods: We analyze an instance of the user-driven health care (UDHC), a network of providers, patients, students and researchers working together to help manage patient care. The network currently focuses on patients from LMICs, but the provider network is global in reach. We describe UDHC and its opportunities and challenges in care-coordination to reduce costs, bring equity, and improve care quality and share evidence. Conclusion: UDHC has resulted in coordinated global based local care, affecting multiple facets of medical practice. Shared information resources between providers with disparate knowledge, results in better understanding by patients, unique and challenging cases for students, innovative community based research and discovery learning for all.Item Implementation of a single sign-on system between practice, research and learning systems(Thieme, 2017-03-29) Purkayastha, Saptarshi; Gichoya, Judy W.; Addepally, Siva Abhishek; BioHealth Informatics, School of Informatics and ComputingBackground: Multiple specialized electronic medical systems are utilized in the health enterprise. Each of these systems has their own user management, authentication and authorization process, which makes it a complex web for navigation and use without a coherent process workflow. Users often have to remember multiple passwords, login/logout between systems that disrupt their clinical workflow. Challenges exist in managing permissions for various cadres of health care providers. Objectives: This case report describes our experience of implementing a single sign-on system, used between an electronic medical records system and a learning management system at a large academic institution with an informatics department responsible for student education and a medical school affiliated with a hospital system caring for patients and conducting research. Methods: At our institution, we use OpenMRS for research registry tracking of interventional radiology patients as well as to provide access to medical records to students studying health informatics. To provide authentication across different users of the system with different permissions, we developed a Central Authentication Service (CAS) module for OpenMRS, released under the Mozilla Public License and deployed it for single sign-on across the academic enterprise. The module has been in implementation since August 2015 to present, and we assessed usability of the registry and education system before and after implementation of the CAS module. 54 students and 3 researchers were interviewed. Results: The module authenticates users with appropriate privileges in the medical records system, providing secure access with minimal disruption to their workflow. No passwords requests were sent and users reported ease of use, with streamlined workflow. Conclusions: The project demonstrates that enterprise-wide single sign-on systems should be used in healthcare to reduce complexity like "password hell", improve usability and user navigation. We plan to extend this to work with other systems used in the health care enterprise.Item Phronesis of AI in radiology: Superhuman meets natural stupidity(arXiv, 2018) Gichoya, Judy W.; Nuthakki, Siddhartha; Maity, Pallavi G.; Purkayastha, Saptarshi; BioHealth Informatics, School of Informatics and ComputingAdvances in AI in the last decade have clearly made economists, politicians, journalists, and citizenry in general believe that the machines are coming to take human jobs. We review 'superhuman' AI performance claims in radiology and then provide a self-reflection on our own work in the area in the form of a critical review, a tribute of sorts to McDermotts 1976 paper, asking the field for some self-discipline. Clearly there is an opportunity to replace humans, but there are better opportunities, as we have discovered to fit cognitive abilities of human and non-humans. We performed one of the first studies in radiology to see how human and AI performance can complement and improve each others performance for detecting pneumonia in chest X-rays. We question if there is a practical wisdom or phronesis that we need to demonstrate in AI today as well as in our field. Using this, we articulate what AI as a field has already and probably can in the future learn from Psychology, Cognitive Science, Sociology and Science and Technology Studies.Item Usability and Security of Different Authentication Methods for an Electronic Health Records System(arXiv, 2021) Purkayastha, Saptarshi; Goyal, Shreya; Oluwalade, Bolu; Phillips, Tyler; Wu, Huanmei; Zou, Xukai; BioHealth Informatics, School of Informatics and ComputingWe conducted a survey of 67 graduate students enrolled in the Privacy and Security in Healthcare course at Indiana University Purdue University Indianapolis. This was done to measure user preference and their understanding of usability and security of three different Electronic Health Records authentication methods: single authentication method (username and password), Single sign-on with Central Authentication Service (CAS) authentication method, and a bio-capsule facial authentication method. This research aims to explore the relationship between security and usability, and measure the effect of perceived security on usability in these three aforementioned authentication methods. We developed a formative-formative Partial Least Square Structural Equation Modeling (PLS-SEM) model to measure the relationship between the latent variables of Usability, and Security. The measurement model was developed using five observed variables (measures). - Efficiency and Effectiveness, Satisfaction, Preference, Concerns, and Confidence. The results obtained highlight the importance and impact of these measures on the latent variables and the relationship among the latent variables. From the PLS-SEM analysis, it was found that security has a positive impact on usability for Single sign-on and bio-capsule facial authentication methods. We conclude that the facial authentication method was the most secure and usable among the three authentication methods. Further, descriptive analysis was done to draw out the interesting findings from the survey regarding the observed variables.Item AuthN-AuthZ: Integrated, User-Friendly and Privacy-Preserving Authentication and Authorization(IEEE, 2020-10) Phillips, Tyler; Yu, Xiaoyuan; Haakenson, Brandon; Goyal, Shreya; Zou, Xukai; Purkayastha, Saptarshi; Wu, Huanmei; BioHealth Informatics, School of Informatics and ComputingIn this paper, we propose a novel, privacy-preserving, and integrated authentication and authorization scheme (dubbed as AuthN-AuthZ). The proposed scheme can address both the usability and privacy issues often posed by authentication through use of privacy-preserving Biometric-Capsule-based authentication. Each Biometric-Capsule encapsulates a user's biometric template as well as their role within a hierarchical Role-based Access Control model. As a result, AuthN-AuthZ provides novel efficiency by performing both authentication and authorization simultaneously in a single operation. To the best of our knowledge, our scheme's integrated AuthN-AuthZ operation is the first of its kind. The proposed scheme is flexible in design and allows for the secure use of robust deep learning techniques, such as the recently proposed and current state-of-the-art facial feature representation method, ArcFace. We conduct extensive experiments to demonstrate the robust performance of the proposed scheme and its AuthN-AuthZ operation.Item Multi-label natural language processing to identify diagnosis and procedure codes from MIMIC-III inpatient notes(arXiv, 2020) Bhavani Singh, A. K.; Guntu, Mounika; Bhimireddy, Ananth Reddy; Gichoya, Judy W.; Purkayastha, Saptarshi; BioHealth Informatics, School of Informatics and ComputingIn the United States, 25% or greater than 200 billion dollars of hospital spending accounts for administrative costs that involve services for medical coding and billing. With the increasing number of patient records, manual assignment of the codes performed is overwhelming, time-consuming and error-prone, causing billing errors. Natural language processing can automate the extraction of codes/labels from unstructured clinical notes, which can aid human coders to save time, increase productivity, and verify medical coding errors. Our objective is to identify appropriate diagnosis and procedure codes from clinical notes by performing multi-label classification. We used de-identified data of critical care patients from the MIMIC-III database and subset the data to select the ten (top-10) and fifty (top-50) most common diagnoses and procedures, which covers 47.45% and 74.12% of all admissions respectively. We implemented state-of-the-art Bidirectional Encoder Representations from Transformers (BERT) to fine-tune the language model on 80% of the data and validated on the remaining 20%. The model achieved an overall accuracy of 87.08%, an F1 score of 85.82%, and an AUC of 91.76% for top-10 codes. For the top-50 codes, our model achieved an overall accuracy of 93.76%, an F1 score of 92.24%, and AUC of 91%. When compared to previously published research, our model outperforms in predicting codes from the clinical text. We discuss approaches to generalize the knowledge discovery process of our MIMIC-BERT to other clinical notes. This can help human coders to save time, prevent backlogs, and additional costs due to coding errors.Item PLHI-MC10: A dataset of exercise activities captured through a triple synchronous medically-approved sensor(Elsevier, 2021-10) Mahajan, Yohan; Bhimireddy, Ananth; Abid, Areeba; Gichoya, Judy W.; Purkayastha, Saptarshi; BioHealth Informatics, School of Informatics and ComputingMost human activity recognition datasets that are publicly available have data captured by using either smartphones or smartwatches, which are usually placed on the waist or the wrist, respectively. These devices obtain one set of acceleration and angular velocity in the x-, y-, and z-axis from the accelerometer and the gyroscope planted in these devices. The PLHI-MC10 dataset contains data obtained by using 3 BioStamp nPoint® sensors from 7 physically healthy adult test subjects performing different exercise activities. These sensors are the state-of-the-art biomedical sensors manufactured by MC10. Each of the three sensors was attached to the subject externally on three muscles-Extensor Digitorum (Posterior Forearm), Gastrocnemius (Calf), and Pectoralis (Chest)-giving us three sets of 3 axial acceleration, two sets of 3 axial angular velocities, and 1 set of voltage values from the heart. Using three different sensors instead of a single sensor improves precision. It helps distinguish between human activities as it simultaneously captures the movement and contractions of various muscles from separate parts of the human body. Each test subject performed five activities (stairs, jogging, skipping, lifting kettlebell, basketball throws) in a supervised environment. The data is cleaned, filtered, and synced.Item A DICOM Framework for Machine Learning and Processing Pipelines Against Real-time Radiology Images(SpringerLink, 2021-08-17) Kathiravelu, Pradeeban; Sharma, Puneet; Sharma, Ashish; Banerjee, Imon; Trivedi, Hari; Purkayastha, Saptarshi; Sinha, Priyanshu; Cadrin‑Chenevert, Alexandre; Safdar, Nabile; Wawira Gichoya, Judy; BioHealth Informatics, School of Informatics and ComputingReal-time execution of machine learning (ML) pipelines on radiology images is difficult due to limited computing resources in clinical environments, whereas running them in research clusters requires efficient data transfer capabilities. We developed Niffler, an open-source Digital Imaging and Communications in Medicine (DICOM) framework that enables ML and processing pipelines in research clusters by efficiently retrieving images from the hospitals’ PACS and extracting the metadata from the images. We deployed Niffler at our institution (Emory Healthcare, the largest healthcare network in the state of Georgia) and retrieved data from 715 scanners spanning 12 sites, up to 350 GB/day continuously in real-time as a DICOM data stream over the past 2 years. We also used Niffler to retrieve images bulk on-demand based on user-provided filters to facilitate several research projects. This paper presents the architecture and three such use cases of Niffler. First, we executed an IVC filter detection and segmentation pipeline on abdominal radiographs in real-time, which was able to classify 989 test images with an accuracy of 96.0%. Second, we applied the Niffler Metadata Extractor to understand the operational efficiency of individual MRI systems based on calculated metrics. We benchmarked the accuracy of the calculated exam time windows by comparing Niffler against the Clinical Data Warehouse (CDW). Niffler accurately identified the scanners’ examination timeframes and idling times, whereas CDW falsely depicted several exam overlaps due to human errors. Third, with metadata extracted from the images by Niffler, we identified scanners with misconfigured time and reconfigured five scanners. Our evaluations highlight how Niffler enables real-time ML and processing pipelines in a research cluster.Item MedShift: identifying shift data for medical dataset curation(2021-12-27) Guo, Xiaoyuan; Wawira Gichoya, Judy; Trivedi, Hari; Purkayastha, Saptarshi; Banerjee, Imon; BioHealth Informatics, School of Informatics and ComputingTo curate a high-quality dataset, identifying data variance between the internal and external sources is a fundamental and crucial step. However, methods to detect shift or variance in data have not been significantly researched. Challenges to this are the lack of effective approaches to learn dense representation of a dataset and difficulties of sharing private data across medical institutions. To overcome the problems, we propose a unified pipeline called MedShift to detect the top-level shift samples and thus facilitate the medical curation. Given an internal dataset A as the base source, we first train anomaly detectors for each class of dataset A to learn internal distributions in an unsupervised way. Second, without exchanging data across sources, we run the trained anomaly detectors on an external dataset B for each class. The data samples with high anomaly scores are identified as shift data. To quantify the shiftness of the external dataset, we cluster B's data into groups class-wise based on the obtained scores. We then train a multi-class classifier on A and measure the shiftness with the classifier's performance variance on B by gradually dropping the group with the largest anomaly score for each class. Additionally, we adapt a dataset quality metric to help inspect the distribution differences for multiple medical sources. We verify the efficacy of MedShift with musculoskeletal radiographs (MURA) and chest X-rays datasets from more than one external source. Experiments show our proposed shift data detection pipeline can be beneficial for medical centers to curate high-quality datasets more efficiently. An interface introduction video to visualize our results is available at this URL.https://youtu.be/V3BF0P1sxQE.Item Blood Glucose Level Prediction as Time-Series Modeling using Sequence-to-Sequence Neural Networks(CEUR Workshop Proceedings, 2020-08) Bhimireddy, Ananth; Sinha, Priyanshu; Oluwalade, Bolu; Gichoya, Judy Wawira; Purkayastha, Saptarshi; BioHealth Informatics, School of Informatics and ComputingThe management of blood glucose levels is critical in the care of Type 1 diabetes subjects. In extremes, high or low levels of blood glucose are fatal. To avoid such adverse events, there is the development and adoption of wearable technologies that continuously monitor blood glucose and administer insulin. This technology allows subjects to easily track their blood glucose levels with early intervention without the need for hospital visits. The data collected from these sensors is an excellent candidate for the application of machine learning algorithms to learn patterns and predict future values of blood glucose levels. In this study, we developed artificial neural network algorithms based on the OhioT1DM training dataset that contains data on 12 subjects. The dataset contains features such as subject identifiers, continuous glucose monitoring data obtained in 5 minutes intervals, insulin infusion rate, etc. We developed individual models, including LSTM, BiLSTM, Convolutional LSTMs, TCN, and sequence-to-sequence models. We also developed transfer learning models based on the most important features of the data, as identified by a gradient boosting algorithm. These models were evaluated on the OhioT1DM test dataset that contains 6 unique subject’s data. The model with the lowest RMSE values for the 30- and 60-minutes was selected as the best performing model. Our result shows that sequence-to-sequence BiLSTM performed better than the other models. This work demonstrates the potential of artificial neural networks algorithms in the management of Type 1 diabetes.