Department of Pharmacology and Toxicology Works

Permanent URI for this collection

Browse

Recent Submissions

Now showing 1 - 10 of 232
  • Item
    Input-selective adenosine A1 receptor-mediated synaptic depression of excitatory transmission in dorsal striatum
    (Springer Nature, 2021-03-18) Fritz, Brandon M.; Yin, Fuqin; Atwood, Brady K.; Pharmacology and Toxicology, School of Medicine
    The medial (DMS) and lateral (DLS) dorsal striatum differentially drive goal-directed and habitual/compulsive behaviors, respectively, and are implicated in a variety of neuropsychiatric disorders. These subregions receive distinct inputs from cortical and thalamic regions which uniquely determine dorsal striatal activity and function. Adenosine A1 receptors (A1Rs) are prolific within striatum and regulate excitatory glutamate transmission. Thus, A1Rs may have regionally-specific effects on neuroadaptive processes which may ultimately influence striatally-mediated behaviors. The occurrence of A1R-driven plasticity at specific excitatory inputs to dorsal striatum is currently unknown. To better understand how A1Rs may influence these behaviors, we first sought to understand how A1Rs modulate these distinct inputs. We evaluated A1R-mediated inhibition of cortico- and thalamostriatal transmission using in vitro whole-cell, patch clamp slice electrophysiology recordings in medium spiny neurons from both the DLS and DMS of C57BL/6J mice in conjunction with optogenetic approaches. In addition, conditional A1R KO mice lacking A1Rs at specific striatal inputs to DMS and DLS were generated to directly determine the role of these presynaptic A1Rs on the measured electrophysiological responses. Activation of presynaptic A1Rs produced significant and prolonged synaptic depression (A1R-SD) of excitatory transmission in the both the DLS and DMS of male and female animals. Our findings indicate that A1R-SD at corticostriatal and thalamostriatal inputs to DLS can be additive and that A1R-SD in DMS occurs primarily at thalamostriatal inputs. These findings advance the field’s understanding of the functional roles of A1Rs in striatum and implicate their potential contribution to neuropsychiatric diseases.
  • Item
    Capsaicin and TRPV1 Channels in the Cardiovascular System: The Role of Inflammation
    (MDPI, 2021-12) Munjuluri, Sreepadaarchana; Wilkerson, Dru A.; Sooch, Gagandeep; Chen, Xingjuan; White, Fletcher A.; Obukhov, Alexander G.; Pharmacology and Toxicology, School of Medicine
    Capsaicin is a potent agonist of the Transient Receptor Potential Vanilloid type 1 (TRPV1) channel and is a common component found in the fruits of the genus Capsicum plants, which have been known to humanity and consumed in food for approximately 7000–9000 years. The fruits of Capsicum plants, such as chili pepper, have been long recognized for their high nutritional value. Additionally, capsaicin itself has been proposed to exhibit vasodilatory, antimicrobial, anti-cancer, and antinociceptive properties. However, a growing body of evidence reveals a vasoconstrictory potential of capsaicin acting via the vascular TRPV1 channel and suggests that unnecessary high consumption of capsaicin may cause severe consequences, including vasospasm and myocardial infarction in people with underlying inflammatory conditions. This review focuses on vascular TRPV1 channels that are endogenously expressed in both vascular smooth muscle and endothelial cells and emphasizes the role of inflammation in sensitizing the TRPV1 channel to capsaicin activation. Tilting the balance between the beneficial vasodilatory action of capsaicin and its unwanted vasoconstrictive effects may precipitate adverse outcomes such as vasospasm and myocardial infarction, especially in the presence of proinflammatory mediators.
  • Item
    Toll-like receptor 4 signaling activates ERG function in prostate cancer and provides a therapeutic target
    (Oxford University Press, 2021-01-27) Greulich, Benjamin M.; Plotnik, Joshua P.; Jerde, Travis J.; Hollenhorst, Peter C.; Pharmacology and Toxicology, School of Medicine
    The TMPRSS2-ERG gene fusion and subsequent overexpression of the ERG transcription factor occurs in ∼50% of prostate tumors, making it the most common abnormality of the prostate cancer genome. While ERG has been shown to drive tumor progression and cancer-related phenotypes, as a transcription factor it is difficult to target therapeutically. Using a genetic screen, we identified the toll-like receptor 4 (TLR4) signaling pathway as important for ERG function in prostate cells. Our data confirm previous reports that ERG can transcriptionally activate TLR4 gene expression; however, using a constitutively active ERG mutant, we demonstrate that the critical function of TLR4 signaling is upstream, promoting ERG phosphorylation at serine 96 and ERG transcriptional activation. The TLR4 inhibitor, TAK-242, attenuated ERG-mediated migration, clonogenic survival, target gene activation and tumor growth. Together these data indicate a mechanistic basis for inhibition of TLR4 signaling as a treatment for ERG-positive prostate cancer.
  • Item
    Corrigendum: eIF3a Regulation of NHEJ Repair Protein Synthesis and Cellular Response to Ionizing Radiation
    (Frontiers Media, 2021-01-07) Tumia, Rima; Wang, Chao J.; Dong, Tianhan; Ma, Shijie; Beebe, Jenny; Chen, Juan; Dong, Zizheng; Liu, Jing-Yuan; Zhang, Jian-Ting; Pharmacology and Toxicology, School of Medicine
    [This corrects the article DOI: 10.3389/fcell.2020.00753.].
  • Item
    Phosphorylation of the Regulators, a Complex Facet of NF-κB Signaling in Cancer
    (MDPI, 2020-12-26) Motolani, Aishat; Martin, Matthew; Sun, Mengyao; Lu, Tao; Pharmacology and Toxicology, School of Medicine
    The nuclear factor kappa B (NF-κB) is a ubiquitous transcription factor central to inflammation and various malignant diseases in humans. The regulation of NF-κB can be influenced by a myriad of post-translational modifications (PTMs), including phosphorylation, one of the most popular PTM formats in NF-κB signaling. The regulation by phosphorylation modification is not limited to NF-κB subunits, but it also encompasses the diverse regulators of NF-κB signaling. The differential site-specific phosphorylation of NF-κB itself or some NF-κB regulators can result in dysregulated NF-κB signaling, often culminating in events that induce cancer progression and other hyper NF-κB related diseases, such as inflammation, cardiovascular diseases, diabetes, as well as neurodegenerative diseases, etc. In this review, we discuss the regulatory role of phosphorylation in NF-κB signaling and the mechanisms through which they aid cancer progression. Additionally, we highlight some of the known and novel NF-κB regulators that are frequently subjected to phosphorylation. Finally, we provide some future perspectives in terms of drug development to target kinases that regulate NF-κB signaling for cancer therapeutic purposes.
  • Item
    Limited versus extended cocaine intravenous self‐administration: Behavioral effects and electrophysiological changes in insular cortex
    (Wiley, 2021-02) Luo, Yi-Xiao; Huang, Donald; Guo, Changyong; Ma, Yao-Ying; Pharmacology and Toxicology, School of Medicine
    Aims: Limited vs extended drug exposure has been proposed as one of the key factors in determining the risk of relapse, which is the primary characteristic of addiction behaviors. The current studies were designed to explore the related behavioral effects and neuronal alterations in the insular cortex (IC), an important brain region involved in addiction. Methods: Experiments started with rats at the age of 35 days, a typical adolescent stage when initial drug exposure occurs often in humans. The drug-seeking/taking behaviors, and membrane properties and intrinsic excitability of IC pyramidal neurons were measured on withdrawal day (WD) 1 and WD 45-48 after limited vs extended cocaine intravenous self-administration (IVSA). Results: We found higher cocaine-taking behaviors at the late withdrawal period after limited vs extended cocaine IVSA. We also found minor but significant effects of limited but not extended cocaine exposure on the kinetics and amplitude of action potentials on WD 45, in IC pyramidal neurons. Conclusion: Our results indicate potential high risks of relapse in young rats with limited but not extended drug exposure, although the adaptations detected in the IC may not be sufficient to explain the neural changes of higher drug-taking behaviors induced by limited cocaine IVSA.
  • Item
    Single-nucleotide polymorphisms in a short basic motif in the ABC transporter ABCG2 disable its trafficking out of endoplasmic reticulum and reduce cell resistance to anticancer drugs
    (The American Society for Biochemistry and Molecular Biology, 2019-12-27) Zhang, Wenji; Yang, Yang; Dong, Zizheng; Shi, Zhi; Zhang, Jian-Ting; Pharmacology and Toxicology, School of Medicine
    ATP-binding cassette (ABC) subfamily G member 2 (ABCG2) belongs to the ABC transporter superfamily and has been implicated in multidrug resistance of cancers. Although the structure and function of ABCG2 have been extensively studied, little is known about its biogenesis and the regulation thereof. In this study, using mutagenesis and several biochemical analyses, we show that the positive charges in the vicinity of the RKR motif downstream of the ABC signature drive trafficking of nascent ABCG2 out of the endoplasmic reticulum (ER) onto plasma membranes. Substitutions of and naturally occurring single-nucleotide polymorphisms within these positively charged residues disabled the trafficking of ABCG2 out of the ER. A representative ABCG2 variant in which the RKR motif had been altered underwent increased ER stress-associated degradation. We also found that unlike WT ABCG2, genetic ABCG2 RKR variants have disrupted normal maturation and do not reduce accumulation of the anticancer drug mitoxantrone and no longer confer resistance to the drug. We conclude that the positive charges downstream of the ABC signature motif critically regulate ABCG2 trafficking and maturation. We propose that single-nucleotide polymorphisms of these residues reduce ABCG2 expression via ER stress-associated degradation pathway and may contribute to reduced cancer drug resistance, improving the success of cancer chemotherapy.
  • Item
    Phosphorylation of Eukaryotic Initiation Factor 2-α in Response to Endoplasmic Reticulum and Nitrosative Stress in the human protozoan parasite, Entamoeba histolytica
    (Elsevier, 2019-12) Walters, Heather A.; Welter, Brenda H.; Sullivan, William J., Jr.; Temesvari, Lesly A.; Pharmacology and Toxicology, School of Medicine
    Entamoeba histolytica is an intestinal parasite infecting over 50 million people worldwide and is the causative agent of amebic dysentery and amoebic liver abscess. In the human host, E. histolytica experiences stress brought on by nutrient deprivation and the host immune response. To be a successful parasite, E. histolytica must counter the stress; therefore, understanding the stress response may uncover new drug targets. In many systems, the stress response includes down-regulation of protein translation, which is regulated by phosphorylation of eukaryotic initiation factor (eIF-2α). Previous work has demonstrated that phosphorylation of the E. histolytica eIF-2α (EheIF-2α) increases significantly when exposed to long-term serum starvation, oxidative stress, and long-term heat shock. However, the effects of reagents that are known to induce nitrosative or endoplasmic reticulum (ER) stresses, on EheIF-2α have yet to be evaluated. Nitrosative stress is part of the host's immune response and ER stress can be caused by several physiological or pathological factors. We treated E. histolytica cells with various reagents known to induce nitrosative stress (DPTA-NONOate and SNP) or ER stress (BFA and DTT). We examined the morphology of the ER, tracked phosphorylation of EheIF-2α, and assessed protein translation in control and stressed cells. While all four stress-inducing reagents caused a global reduction in protein translation, only DTT was capable of also inducing changes in the morphology of the ER (consistent with ER stress) and phosphorylation of EheIF-2α. This suggests that DTT authentically induces ER stress in E. histolytica and that this stress is managed by the eIF-2α-based system. This was supported by the observation that cells expressing a non-phosphorylatable version of eIF-2α were also highly sensitive to DTT-stress. Since protein translation decreased in the absence of phosphorylation of eIF-2α (after treatment with DPTA-NONOate, SNP or BFA), the data also indicate that there are alternative protein-translational control pathways in E. histolytica. Overall, our study further illuminates the stress response to nitrosative stress and ER stress in E. histolytica.
  • Item
    Prenatal Opioid Exposure Enhances Responsiveness to Future Drug Reward and Alters Sensitivity to Pain: A Review of PreclinicalModels and Contributing Mechanisms
    (The Society for Neuroscience, 2020-10-15) Grecco, Gregory G.; Atwood, Brady K.; Pharmacology and Toxicology, School of Medicine
    The opioid crisis has resulted in an unprecedented number of neonates born with prenatal opioid exposure (POE); however, the long-term effects of POE on offspring behavior and neurodevelopment remain relatively unknown. The advantages and disadvantages of the various preclinical POE models developed over the last several decades are discussed in the context of clinical and translational relevance. Although considerable and important variability exists among preclinical models of POE, the examination of these preclinical models has revealed that opioid exposure during the prenatal period contributes to maladaptive behavioral development as offspring mature including an altered responsiveness to rewarding drugs and increased pain response. The present review summarizes key findings demonstrating the impact of POE on offspring drug self-administration (SA), drug consumption, the reinforcing properties of drugs, drug tolerance, and other reward-related behaviors such as hypersensitivity to pain. Potential underlying molecular mechanisms which may contribute to this enhanced addictive phenotype in POE offspring are further discussed with special attention given to key brain regions associated with reward including the striatum, prefrontal cortex (PFC), ventral tegmental area (VTA), hippocampus, and amygdala. Improvements in preclinical models and further areas of study are also identified which may advance the translational value of findings and help address the growing problem of POE in clinical populations.
  • Item
    The Role of Adenine Nucleotide Translocase in the Mitochondrial Permeability Transition
    (MDPI, 2020-12) Brustovetsky, Nickolay; Pharmacology and Toxicology, School of Medicine
    The mitochondrial permeability transition, a Ca2+-induced significant increase in permeability of the inner mitochondrial membrane, plays an important role in various pathologies. The mitochondrial permeability transition is caused by induction of the permeability transition pore (PTP). Despite significant effort, the molecular composition of the PTP is not completely clear and remains an area of hot debate. The Ca2+-modified adenine nucleotide translocase (ANT) and F0F1 ATP synthase are the major contenders for the role of pore in the PTP. This paper briefly overviews experimental results focusing on the role of ANT in the mitochondrial permeability transition and proposes that multiple molecular entities might be responsible for the conductance pathway of the PTP. Consequently, the term PTP cannot be applied to a single specific protein such as ANT or a protein complex such as F0F1 ATP synthase, but rather should comprise a variety of potential contributors to increased permeability of the inner mitochondrial membrane.