- Department of Cellular and Integrative Physiology Works
Department of Cellular and Integrative Physiology Works
Permanent URI for this collection
Browse
Recent Submissions
Item Investigational new drug enabling angiotensin oral-delivery studies to attenuate pulmonary hypertension(Elsevier, 2020-03) Daniell, Henry; Mangu, Venkata; Yakubov, Bakhtiyor; Park, Jiyoung; Habibi, Peyman; Shi, Yao; Gonnella, Patricia A.; Fisher, Amanda; Cook, Todd; Zeng, Lily; Kawut, Steven M.; Lahm, Tim; Cellular and Integrative Physiology, School of MedicinePulmonary arterial hypertension (PAH) is a deadly and uncurable disease characterized by remodeling of the pulmonary vasculature and increased pulmonary artery pressure. Angiotensin Converting Enzyme 2 (ACE2) and its product, angiotensin-(1-7) [ANG-(1-7)] were expressed in lettuce chloroplasts to facilitate affordable oral drug delivery. Lyophilized lettuce cells were stable up to 28 months at ambient temperature with proper folding, assembly of CTB-ACE2/ANG-(1-7) and functionality. When the antibiotic resistance gene was removed, Ang1-7 expression was stable in subsequent generations in marker-free transplastomic lines. Oral gavage of monocrotaline-induced PAH rats resulted in dose-dependent delivery of ANG-(1-7) and ACE2 in plasma/tissues and PAH development was attenuated with decreases in right ventricular (RV) hypertrophy, RV systolic pressure, total pulmonary resistance and pulmonary artery remodeling. Such attenuation correlated well with alterations in the transcription of Ang-(1-7) receptor MAS and angiotensin II receptor AGTRI as well as IL-1β and TGF-β1. Toxicology studies showed that both male and female rats tolerated ~10-fold ACE2/ANG-(1-7) higher than efficacy dose. Plant cell wall degrading enzymes enhanced plasma levels of orally delivered protein drug bioencapsulated within plant cells. Efficient attenuation of PAH with no toxicity augurs well for clinical advancement of the first oral protein therapy to prevent/treat underlying pathology for this disease.Item Disentangling the Gordian knot of local metabolic control of coronary blood flow(American Physiological Society, 2020-01-01) Tune, Johnathan D.; Goodwill, Adam G.; Kiel, Alexander M.; Baker, Hana E.; Bender, Shawn B.; Merkus, Daphne; Duncker, Dirk J.; Cellular and Integrative Physiology, School of MedicineRecognition that coronary blood flow is tightly coupled with myocardial metabolism has been appreciated for well over half a century. However, exactly how coronary microvascular resistance is tightly coupled with myocardial oxygen consumption (MV̇o2) remains one of the most highly contested mysteries of the coronary circulation to this day. Understanding the mechanisms responsible for local metabolic control of coronary blood flow has been confounded by continued debate regarding both anticipated experimental outcomes and data interpretation. For a number of years, coronary venous Po2 has been generally accepted as a measure of myocardial tissue oxygenation and thus the classically proposed error signal for the generation of vasodilator metabolites in the heart. However, interpretation of changes in coronary venous Po2 relative to MV̇o2 are quite nuanced, inherently circular in nature, and subject to confounding influences that remain largely unaccounted for. The purpose of this review is to highlight difficulties in interpreting the complex interrelationship between key coronary outcome variables and the arguments that emerge from prior studies performed during exercise, hemodilution, hypoxemia, and alterations in perfusion pressure. Furthermore, potential paths forward are proposed to help to facilitate further dialogue and study to ultimately unravel what has become the Gordian knot of the coronary circulation.Item Distinct hemodynamic responses to (pyr)apelin-13 in large animal models(APS, 2020-04) Tune, Johnathan D.; Baker, Hana E.; Berwick, Zachary; Moberly, Steven P.; Casalini, Eli D.; Noblet, Jillian N.; Zhen, Eugene; Kowala, Mark C.; Christe, Michael E.; Goodwill, Adam; Cellular and Integrative Physiology, School of MedicineThis study tested the hypothesis that (pyr)apelin-13 dose-dependently augments myocardial contractility and coronary blood flow, irrespective of changes in systemic hemodynamics. Acute effects of intravenous (pyr)apelin-13 administration (10 to 1,000 nM) on blood pressure, heart rate, left ventricular pressure and volume, and coronary parameters were measured in dogs and pigs. Administration of (pyr)apelin-13 did not influence blood pressure (P = 0.59), dP/dtmax (P = 0.26), or dP/dtmin (P = 0.85) in dogs. However, heart rate dose-dependently increased > 70% (P < 0.01), which was accompanied by a significant increase in coronary blood flow (P < 0.05) and reductions in left ventricular end-diastolic volume and stroke volume (P < 0.001). In contrast, (pyr)apelin-13 did not significantly affect hemodynamics, coronary blood flow, or indexes of contractile function in pigs. Furthermore, swine studies found no effect of intracoronary (pyr)apelin-13 administration on coronary blood flow (P = 0.83) or vasorelaxation in isolated, endothelium-intact (P = 0.89) or denuded (P = 0.38) coronary artery rings. Examination of all data across (pyr)apelin-13 concentrations revealed an exponential increase in cardiac output as peripheral resistance decreased across pigs and dogs (P < 0.001; R2 = 0.78). Assessment of the Frank-Starling relationship demonstrated a significant linear relationship between left ventricular end-diastolic volume and stroke volume across species (P < 0.001; R2 = 0.70). Taken together, these findings demonstrate that (pyr)apelin-13 does not directly influence myocardial contractility or coronary blood flow in either dogs or pigs.Item Educational disparities in health behaviors among patients with diabetes: the Translating Research Into Action for Diabetes (TRIAD) Study(BioMed Central, 2007-10-29) Karter, Andrew J.; Stevens, Mark R.; Brown, Arleen F.; Duru, O. Kenrik; Gregg, Edward W.; Gary, Tiffany L.; Beckles, Gloria L.; Tseng, Chien-Wen; Marrero, David G.; Waitzfelder, Beth; Herman, William H.; Piette, John D.; Safford, Monika M.; Ettner, Susan L.; Cellular and Integrative Physiology, School of MedicineBackground Our understanding of social disparities in diabetes-related health behaviors is incomplete. The purpose of this study was to determine if having less education is associated with poorer diabetes-related health behaviors. Methods This observational study was based on a cohort of 8,763 survey respondents drawn from ~180,000 patients with diabetes receiving care from 68 provider groups in ten managed care health plans across the United States. Self-reported survey data included individual educational attainment ("education") and five diabetes self-care behaviors among individuals for whom the behavior would clearly be indicated: foot exams (among those with symptoms of peripheral neuropathy or a history of foot ulcers); self-monitoring of blood glucose (SMBG; among insulin users only); smoking; exercise; and certain diabetes-related health seeking behaviors (use of diabetes health education, website, or support group in last 12 months). Predicted probabilities were modeled at each level of self-reported educational attainment using hierarchical logistic regression models with random effects for clustering within health plans. Results Patients with less education had significantly lower predicted probabilities of being a non-smoker and engaging in regular exercise and health-seeking behaviors, while SMBG and foot self-examination did not vary by education. Extensive adjustment for patient factors revealed no discernable confounding effect on the estimates or their significance, and most education-behavior relationships were similar across sex, race and other patient characteristics. The relationship between education and smoking varied significantly across age, with a strong inverse relationship in those aged 25–44, modest for those ages 45–64, but non-evident for those over 65. Intensity of disease management by the health plan and provider communication did not alter the examined education-behavior relationships. Other measures of socioeconomic position yielded similar findings. Conclusion The relationship between educational attainment and health behaviors was modest in strength for most behaviors. Over the life course, the cumulative effect of reduced practice of multiple self-care behaviors among less educated patients may play an important part in shaping the social health gradient.Item DOC2B promotes insulin sensitivity in mice via a novel KLC1-dependent mechanism in skeletal muscle(Springer Verlag, 2019-05) Zhang, Jing; Oh, Eunjin; Merz, Karla E.; Aslamy, Arianne; Veluthakal, Rajakrishnan; Salunkhe, Vishal A.; Ahn, Miwon; Tunduguru, Ragadeepthi; Thurmond, Debbie C.; Cellular and Integrative Physiology, School of MedicineAims/hypothesis: Skeletal muscle accounts for >80% of insulin-stimulated glucose uptake; dysfunction of this process underlies insulin resistance and type 2 diabetes. Insulin sensitivity is impaired in mice deficient in the double C2 domain β (DOC2B) protein, while whole-body overexpression of DOC2B enhances insulin sensitivity. Whether insulin sensitivity in the skeletal muscle is affected directly by DOC2B or is secondary to an effect on other tissues is unknown; the underlying molecular mechanisms also remain unclear. Methods: Human skeletal muscle samples from non-diabetic or type 2 diabetic donors were evaluated for loss of DOC2B during diabetes development. For in vivo analysis, new doxycycline-inducible skeletal-muscle-specific Doc2b-overexpressing mice fed standard or high-fat diets were evaluated for insulin and glucose tolerance, and insulin-stimulated GLUT4 accumulation at the plasma membrane (PM). For in vitro analyses, a DOC2B-overexpressing L6-GLUT4-myc myoblast/myotube culture system was coupled with an insulin resistance paradigm. Biochemical and molecular biology methods such as site-directed mutagenesis, co-immunoprecipitation and mass spectrometry were used to identify the molecular mechanisms linking insulin stimulation to DOC2B. Results: We identified loss of DOC2B (55% reduction in RNA and 40% reduction in protein) in the skeletal muscle of human donors with type 2 diabetes. Furthermore, inducible enrichment of DOC2B in skeletal muscle of transgenic mice enhanced whole-body glucose tolerance (AUC decreased by 25% for female mice) and peripheral insulin sensitivity (area over the curve increased by 20% and 26% for female and male mice, respectively) in vivo, underpinned by enhanced insulin-stimulated GLUT4 accumulation at the PM. Moreover, DOC2B enrichment in skeletal muscle protected mice from high-fat-diet-induced peripheral insulin resistance, despite the persistence of obesity. In L6-GLUT4-myc myoblasts, DOC2B enrichment was sufficient to preserve normal insulin-stimulated GLUT4 accumulation at the PM in cells exposed to diabetogenic stimuli. We further identified that DOC2B is phosphorylated on insulin stimulation, enhancing its interaction with a microtubule motor protein, kinesin light chain 1 (KLC1). Mutation of Y301 in DOC2B blocked the insulin-stimulated phosphorylation of DOC2B and interaction with KLC1, and it blunted the ability of DOC2B to enhance insulin-stimulated GLUT4 accumulation at the PM. Conclusions/interpretation: These results suggest that DOC2B collaborates with KLC1 to regulate insulin-stimulated GLUT4 accumulation at the PM and regulates insulin sensitivity. Our observation provides a basis for pursuing DOC2B as a novel drug target in the muscle to prevent/treat type 2 diabetes.Item Inhibition of sodium–glucose cotransporter-2 preserves cardiac function during regional myocardial ischemia independent of alterations in myocardial substrate utilization(Springer, 2019-04-19) Baker, Hana E.; Kiel, Alexander M.; Luebbe, Samuel T.; Simon, Blake R.; Earl, Conner C.; Regmi, Ajit; Roell, William C.; Mather, Kieren J.; Tune, Johnathan D.; Goodwill, Adam G.; Cellular and Integrative Physiology, School of MedicineThe goal of the present study was to evaluate the effects of SGLT2i on cardiac contractile function, substrate utilization, and efficiency before and during regional myocardial ischemia/reperfusion injury in normal, metabolically healthy swine. Lean swine received placebo or canagliflozin (300 mg PO) 24 h prior to and the morning of an invasive physiologic study protocol. Hemodynamic and cardiac function measurements were obtained at baseline, during a 30-min complete occlusion of the circumflex coronary artery, and during a 2-h reperfusion period. Blood pressure, heart rate, coronary flow, and myocardial oxygen consumption were unaffected by canagliflozin treatment. Ventricular volumes remained unchanged in controls throughout the protocol. At the onset of ischemia, canagliflozin produced acute large increases in left ventricular end-diastolic and systolic volumes which returned to baseline with reperfusion. Canagliflozin-mediated increases in end-diastolic volume were directly associated with increases in stroke volume and stroke work relative to controls during ischemia. Canagliflozin also increased cardiac work efficiency during ischemia relative to control swine. No differences in myocardial uptake of glucose, lactate, free fatty acids or ketones, were noted between treatment groups at any time. In separate experiments using a longer 60 min coronary occlusion followed by 2 h of reperfusion, canagliflozin increased end-diastolic volume and stroke volume and significantly diminished myocardial infarct size relative to control swine. These data demonstrate that SGLT2i with canagliflozin preserves cardiac contractile function and efficiency during regional myocardial ischemia and provides ischemia protection independent of alterations in myocardial substrate utilization.Item Catechol estrogens stimulate insulin secretion in pancreatic β-cells via activation of the transient receptor potential A1 (TRPA1) channel(American Society for Biochemistry and Molecular Biology, 2019-02-22) Ma, Wenzhen; Chen, Xingjuan; Cerne, Rok; Syed, Samreen K.; Ficorilli, James V.; Cabrera, Over; Obukhov, Alexander G.; Efanov, Alexander M.; Cellular and Integrative Physiology, School of MedicineEstrogen hormones play an important role in controlling glucose homeostasis and pancreatic β-cell function. Despite the significance of estrogen hormones for regulation of glucose metabolism, little is known about the roles of endogenous estrogen metabolites in modulating pancreatic β-cell function. In this study, we evaluated the effects of major natural estrogen metabolites, catechol estrogens, on insulin secretion in pancreatic β-cells. We show that catechol estrogens, hydroxylated at positions C2 and C4 of the steroid A ring, rapidly potentiated glucose-induced insulin secretion via a nongenomic mechanism. 2-Hydroxyestrone, the most abundant endogenous estrogen metabolite, was more efficacious in stimulating insulin secretion than any other tested catechol estrogens. In insulin-secreting cells, catechol estrogens produced rapid activation of calcium influx and elevation in cytosolic free calcium. Catechol estrogens also generated sustained elevations in cytosolic free calcium and evoked inward ion current in HEK293 cells expressing the transient receptor potential A1 (TRPA1) cation channel. Calcium influx and insulin secretion stimulated by estrogen metabolites were dependent on the TRPA1 activity and inhibited with the channel-specific pharmacological antagonists or the siRNA. Our results suggest the role of estrogen metabolism in a direct regulation of TRPA1 activity with potential implications for metabolic diseases.Item Effect of Age on Diabetogenicity of Alloxan in Ossabaw Miniature Swine(American Association for Laboratory Animal Science, 2019-04-01) Badin, Jill K.; Progar, Victor; Pareddy, Anisha; Cagle, Jordan; Alloosh, Mouhamad; Sturek, Michael; Cellular and Integrative Physiology, School of MedicineAccording to a single study in dogs that was conducted in 1949, the diabetic effects of the β-cell toxin alloxan are dependent on age. The current study examined whether this age-dependence of alloxan is present in the clinically relevant Ossabaw miniature swine (Sus scrofa domestica) model of metabolic syndrome. Juvenile swine (n = 8; age, 4.3 ± 0.2 mo) and adult swine (n = 8; age, 7.4 ± 0.2 mo) received alloxan (average dosage, 140 mg/kg IV) and were placed on a hypercaloric, atherogenic diet for 6 mo. The metabolic syndrome profile was confirmed by measuring body weight, cholesterol, and triglycerides. Intravenous glucose tolerance testing was used to assess glucose clearance and peripheral plasma insulin levels. The β-cell mass was calculated by immunohistochemical staining of pancreatic tissue. Although juvenile and adult swine exhibited comparable severity of metabolic syndrome, adult swine developed impaired glucose clearance and elevated fasting blood glucose levels at 6 mo after alloxan administration on the atherogenic diet. Peripheral plasma insulin levels in juvenile and adult swine were comparable at all time points and lower than in nonalloxan-treated age-matched controls, which is reflected in the lower pancreatic β-cell mass of the 2 treated groups. However, compared with adult pigs, juvenile swine exhibited greater insulin response recovery (complete or partial restoration of peripheral insulin levels to reference values) at 6 mo after alloxan administration. Overall, these results indicate that youth can confer some protection against the diabetogenic effects of alloxan in swine, potentially due in part to the greater insulin response recovery of young pigs. This study supports previous research that the effects of alloxan are dependent on the developmental maturity of the animal.Item Transgelin Induces Dysfunction of Fetal Endothelial Colony-Forming Cells From Gestational Diabetic Pregnancies(American Physiological Society, 2018-10-01) Varberg, Kaela M.; Garretson, Rashell O.; Blue, Emily K.; Chu, Chenghao; Gohn, Cassandra R.; Tu, Wanzhu; Haneline, Laura S.; Cellular and Integrative Physiology, School of MedicineFetal exposure to gestational diabetes mellitus (GDM) predisposes children to future health complications including hypertension and cardiovascular disease. A key mechanism by which these complications occur is through the functional impairment of vascular progenitor cells, including endothelial colony-forming cells (ECFCs). Previously, we showed that fetal ECFCs exposed to GDM have decreased vasculogenic potential and altered gene expression. In this study, we evaluate whether transgelin (TAGLN), which is increased in GDM-exposed ECFCs, contributes to vasculogenic dysfunction. TAGLN is an actin-binding protein involved in the regulation of cytoskeletal rearrangement. We hypothesized that increased TAGLN expression in GDM-exposed fetal ECFCs decreases network formation by impairing cytoskeletal rearrangement resulting in reduced cell migration. To determine if TAGLN is required and/or sufficient to impair ECFC network formation, TAGLN was reduced and overexpressed in ECFCs from GDM and uncomplicated pregnancies, respectively. Decreasing TAGLN expression in GDM-exposed ECFCs improved network formation and stability as well as increased migration. In contrast, overexpressing TAGLN in ECFCs from uncomplicated pregnancies decreased network formation, network stability, migration, and alignment to laminar flow. Overall, these data suggest that increased TAGLN likely contributes to the vasculogenic dysfunction observed in GDM-exposed ECFCs, as it impairs ECFC migration, cell alignment, and network formation. Identifying the molecular mechanisms underlying fetal ECFC dysfunction following GDM exposure is key to ascertain mechanistically the basis for cardiovascular disease predisposition later in life.Item Endothelial Stem and Progenitor Cells for Regenerative Medicine(Springer, 2019) Banno, Kimihiko; Yoder, Mervin C.; Cellular and Integrative Physiology, School of MedicinePurpose of Review Vascular endothelial stem cell (VESC) and progenitor cell are emerging as local resident regulators of vascular endothelial repair and replacement in mammalian subjects. However, widely recognized and accepted standard measures of stem cell function have yet to be published and, thus, we summarize some recent evidence that VESCs demonstrate stem cell properties in the process of endothelial cell (EC) lineage emergence, repair, and regeneration. Recent Findings Some rare resident ECs have been identified that are quiescent and reside within blood vessels but are activated and proliferate in response to injury. Transcriptome analyses of these ECs at a single cell level are providing new insights into VESC identity, including tissue specific EC heterogeneity. Summary Blood vessels and circulating blood contain rare immature ECs that display stem cell potential. Continuous efforts to define their precise location, origin, surface marker, and molecular signatures would enhance current approaches for purification of cells that would enable us to build new vessels for regenerative medicine.