- Hazim El-Mounayri
Hazim El-Mounayri
Permanent URI for this collection
Hazim El-Mounayri has translated his research into practical technology that brings virtual training to tomorrow's manufacturing workforce. The Advanced Virtual Manufacturing Laboratory (AVML), developed with industrial partner Advanced Science and Automation Corp., provides virtual training and education on high-tech Computer Numerically Controlled (CNC) machines. It enables colleges to easily and inexpensively provide students with effective, safe, and highly accessible web-based training on advanced machining tools, equipment and processes.
AVML is a valuable tool for training the local workforce in advanced manufacturing. The system can be used by machine tool manufacturers to provide online training, reducing or eliminating the need for on-site, live training classes for their customers. The system can also be used for machining process verification and optimization. The AVML is so versatile it can run on desktop or laptop personal computers as well as on more sophisticated 3D and fully immersive systems.
The new technology opens the door for effective distance education in disciplines that were traditionally confined to live teaching, including engineering, physics, and science. It is expected to be a major tool for training of Indiana's workforce in advanced manufacturing and attracting talented students to engineering and technology directly from high schools.
Professor El-Mounaryi's use of technology to expand the reach of teaching and training in advanced manufacturing is another practical example of how IUPUI's faculty members are TRANSLATING their RESEARCH INTO PRACTICE.
Browse
Recent Submissions
Item A Thermomechanical Analysis of Conformal Cooling Channels in 3D Printed Plastic Injection Molds(MDPI, 2018-12) Jahan, Suchana Akter; El-Mounayri, Hazim; Mechanical and Energy Engineering, School of Engineering and TechnologyPlastic injection molding is a versatile process, and a major part of the present plastic manufacturing industry. The traditional die design is limited to straight (drilled) cooling channels, which don't impart optimal thermal (or thermomechanical) performance. With the advent of additive manufacturing technology, injection molding tools with conformal cooling channels are now possible. However, optimum conformal channels based on thermomechanical performance are not found in the literature. This paper proposes a design methodology to generate optimized design configurations of such channels in plastic injection molds. The design of experiments (DOEs) technique is used to study the effect of the critical design parameters of conformal channels, as well as their cross-section geometries. In addition, designs for the "best" thermomechanical performance are identified. Finally, guidelines for selecting optimum design solutions given the plastic part thickness are provided.Item Assessment of STEM e-Learning in an Immersive Virtual Reality (VR) Environment(ASEE, 2018) Rogers, Christian B.; El-Mounayri, Hazim; Wasfy, Tamer; Satterwhite, Jesse; Computer and Information Science, School of ScienceThis paper shows the early research findings of utilizing a virtual reality environment as an educational tool for the operation of a computerized numerical control (CNC) milling machine. Based off of previous work, the Advanced Virtual Machining Lab (AVML), this project features an environment in which a virtual CNC machine is fully operable, designed to allow STEM students and training professionals to learn the use of the CNC machine without the need to be in a physical lab. Users operate in the virtual environment using an immersive virtual reality headset (i.e. Oculus Rift) and standard input devices (i.e. mouse and keyboard), both of which combined make for easy movement and realistic visuals. On-screen tutorials allow users to learn about what they need to do to operate the machine without the need for outside instruction. While designing and perfecting this environment has been the primary focus of this project thus far, the research goal is to test the ease of use and the pedagogical effectiveness of the immersive technology as it relates to education in STEM fields. Initial usability studies for this environment featured students from a CAD/CAM-Theory and Advanced Applications (ME 54600) course at a Midwestern urban institution. Results from the study were tabulated with a survey using a four-point Likert scale and several open-ended questions. Findings from the survey indicated that the majority of users found the environment realistic and easy to navigate, in addition to finding the immersive technology to be beneficial. Many also indicated that they felt comfortable navigating the environment without the need for additional assistance from the survey proctors. Full details on the usability study, including data and discussion, can be found in this paper. The general consensus from the study was that, while some features needed refinement, the immersive environment helped them learn about the operation of a CNC machine. An additional comparative study will be undertaken to evaluate pedagogical effectiveness.Item Investigation of Layer Based Thermal Behavior in Fused Deposition Modeling Process by Infrared Thermography(Elsevier, 2018) Malekipour, Ehsan; Attoye, Samuel; El-Mounayri, Hazim; Mechanical Engineering, School of Engineering and TechnologyThere are numerous research efforts that address the monitoring and control of additive manufacturing (AM) processes to improve part quality. Much less research exists on process monitoring and control of Fused Deposition Modeling (FDM). FDM is inherently a thermal process and thus, lends itself to being study by thermography. In this regard, there are various process parameters or process signatures such as built-bed temperature, temperature mapping of parts during deposition of layers, and the nozzle extrusion temperature that may monitor to optimize the quality of fabricated parts. In this work, we applied image based thermography layer by layer with the usage of an infrared camera to investigate the thermal behavior and thermal evolution of the FDM process for the standard samples printed by ABS filament. The combination of the layer based temperature profile plot and the temporal plot has been utilized to understand the temperature distribution and average temperature through the layers under fabrication. This information provides insights for potential modification of the scan strategy and optimization of process parameters in future research, based on the thermal evolution. Accordingly, this can reduce some frequent defects which have roots in thermal characteristics of the deposited layers and also, improve the surface quality and/or mechanical properties of the fabricated parts. In addition, this approach for monitoring the process will allow manufacturers to build, qualify, and certify parts with greater throughput and accelerate the proliferation of products into high-quality applications.Item Experimental Study of Material Removal at Nanoscale(Elsevier, 2018-01-01) Promyoo, Rapeepan; El-Mounayri, Hazim; Agarwal, Mangilal; Mechanical Engineering, School of Engineering and TechnologyIn order to develop nano-machining into a viable and efficient process, there is a need to achieve a better understand the relation between process parameters (such as feed, speed, and depth of cut) and resulting geometry. In this study, a comprehensive experimental parametric study was conducted to produce a database that is used to select proper machining conditions for guiding the fabrication of precise nano-geometries. The parametric studies conducted using AFM nanosize tips showed the following: normal forces for both nano-indentation and nano-scratching increase as the depth of cut increases. The indentation depth increases with tip speed, but the depth of scratch decrease with increasing tip speed. The width and depth of scratched groove also depend on the scratch angle. The recommended scratch angle is at 90Ā°. The surface roughness increases with step over, especially when the step over is larger than the tip radius. The depth of cut also increases as the step over decreases.Item Heat Conduction and Geometry Topology Optimization of Support Structure in Laser-based Additive Manufacturing(Springer, 2018) Malekipour, Ehsan; Tovar, Andres; El-Mounayri, Hazim; Mechanical Engineering, School of Engineering and TechnologyLaser-based metal additive manufacturing technologies such as Selective Laser Sintering (SLS) and Selective Laser Melting (SLM) allow the fabrication of complex parts by selectively sintering or melting metallic powders layer by layer. Although elaborate features can be produced by these technologies, heat accumulation in overhangs leads to heat stress and warping, affecting the dimensional and geometrical accuracy of the part. This work introduces an approach to mitigate heat stress by minimizing the temperature gradient between the heat-accumulated zone in overhangs and the layers beneath. This is achieved by generating complex support structures that maintain the mechanical stability of the overhang and increase the heat conduction between these areas. The architecture of the complex support structures is obtained by maximizing heat conduction as an objective function to optimize the topology of support structure. This work examines the effect of various geometries on the objective function in order to select a suitable one to consume less material with almost same conduction. Ongoing work is the development of an experimental testbed for verification.Item Thermo-mechanical Design Optimization of Conformal Cooling Channels using Design of Experiments Approach(Elsevier, 2017) Jahan, Suchana A.; Wu, Tong; Zhang, Yi; Zhang, Jing; Tovar, Andres; El-Mounayri, Hazim; Mechanical Engineering, School of Engineering and TechnologyPlastic injection molding is a versatile process and a major part of the present plastic manufacturing industry. Traditional die design is limited to straight (drilled) cooling channels, which donāt impart optimal thermal (or thermo-mechanical) performance. With the advent of additive manufacturing technology, design of injection molding tools with conformal cooling channels is now possible. The incorporation of conformal cooling channels can improve the thermal performance of an injection mold, though it may compromise the structural or mechanical stability of the mold. However, optimum conformal channels based on thermo-mechanical performance are not found in the literature. This paper proposes a design methodology to generate optimized design configurations of such channels in plastic injection molds. Design of experiments (DOEs) technique is used to study the effect of critical design parameters of conformal channels. In addition, a trade-off technique is utilized to obtain optimum design configurations of conformal cooling channels for ābestā thermo-mechanical performance of a mold.Item Design Optimization of Plastic Injection Tooling for Additive Manufacturing(Elsevier, 2017) Wu, Tong; Jahan, Suchana A.; Zhang, Yi; Zhang, Jing; El-Mounayri, Hazim; Tovar, Andres; Mechanical Engineering, School of Engineering and TechnologyThis work presents a systematic and practical finite element based design optimization approach for the injection tooling adaptive to additive manufacturing (AM) technology using stereo-lithography (SLA) and powder bed fusion (PBF). First a thermomechanical optimization of conformal cooling is implemented to obtain the optimal parameters associated with conformal cooling design. Then, a multiscale thermomechanical topology optimization is implemented to obtain a lightweight lattice injection tooling without compromising the thermal and mechanical performance. The design approach is implemented to optimize a real design mold and the final optimal design is prototyped in SLA and the manufacturability in PBF has been discussed.Item Assessment of STEM e-Learning in an Immersive Virtual Reality (VR) Environment(American Society for Engineering Education, 2016-06) El-Mounayri, Hazim; Rogers, Christian; Fernandez, Eugenia; Satterwhite, Jesse Connor; Department of Engineering Technology, School of Engineering and TechnologyThis paper shows the early research findings of utilizing a virtual reality environment as an educational tool for the operation of a computerized numerical control (CNC) milling machine. Based off of a previous work, the Advanced Virtual Machining Lab (AVML), this project features a virtual environment in which a virtual CNC machine is fully operable, designed to allow STEM students and training professionals to learn the use of the CNC machine without the need to be in a physical lab. Users operate in the virtual environment using an immersive virtual reality headset (i.e. Oculus Rift) and standard input devices (i.e. mouse and keyboard), both of which combined make for easy movement and realistic visuals. On-screen tutorials allow users to learn about what they need to do to operate the machine without the need for outside instruction. While designing and perfecting this environment has been the primary focus of this project thus far, the research goal is to test the ease of use and the pedagogical effectiveness of the immersive technology as it relates to education in STEM fields. Initial usability studies for this environment featured students from the graduate level CAD/CAM-Theory and Advanced Applications (ME 54600) course at IUPUI. Results from the study were tabulated with a survey using a four-point Likert scale and several open-ended questions. Findings from the survey indicate that the majority of users found the environment realistic and easy to navigate, in addition to finding the immersive technology to be beneficial. Many also indicated that they felt comfortable navigating the environment without the need for additional assistance from the survey proctors. Full details on the first usability study, including data and discussion, can be found in this paper. The general consensus from the study was that, while some features needed refinement, the immersive environment helped them learn about the operation of a CNC machine. Additional usability studies will need to be undergone to refine said features before beginning the final study, in which students learning from the immersive virtual environment will be tested against students learning from traditional methods. Details on this last study will be discussed in the final paper, which will also discuss the methods used for preparing the environment, full results and detailed discussion on each of the usability studies, and conclusions on the usability and educational effectiveness of the immersive virtual reality technology in STEM education.Item Advanced Virtual Manufacturing Lab for Research, Training, & Education(Office of the Vice Chancellor for Research, 2010-04-09) El-Mounayri, HazimThe research formed a base for innovative technology that was used to develop a product on its way to commercialization. The new product provides effective and integrated tool for training and education in advanced manufacturing. It is based on sound e-learning pedagogy and highly effective and integrated virtual reality learning environment.Item Integrated Nanosystems Development Institute(Office of the Vice Chancellor for Research, 2011-04-08) El-Mounayri, Hazim; Witzmann, Frank; Agarwal, Mangilal; Naumann, Christoph; Rizkalla, Maher; Decca, RicardoIntegrated Nanosystems Development Institute (INDI) has been recognized and sponsored as a center under the IUPUI Signature Centers Initiative (SCI). INDI is a multidisciplinary institute dedicated to micro/nanoscale systems research, education, and commercialization while providing cluster of analytical equipment and labs serving over 30 faculty members from different departments and schools in support of their research. Specifically, the vision of the INDI is to be a world-class resource for the realization of nanotechnology-based systems that contribute to the economic growth and social advancement of Indiana and the nation and benefit humanity as a whole. The mission of the center is to: 1) Advance nanotechnology research at IUPUI by promoting innovative interdisciplinary research efforts that will lead to external funding; 2) Enhance IUPUIās research reputation in nanotechnology, nationally and internationally, by providing an identifiable entity that draws in a diverse group of researchers and promotes the combined strength of the group; and 3) Be a leader in translating bionanotechnology and nanoenergy research into innovations that will contribute to the social well being and economic growth of central Indiana and the nation. INDI builds on an excellent research infrastructure at IUPUI. The core facilities of the institute include cleanroom, nano/microfabrication & characterization facilities, and high power simulation and computational resources. Currently, faculty from the Schools of Science, Engineering & Technology, Dentistry, and Medicine, are associated with INDI. The given faculty have expertise in a wide range of fields, including chemistry, physics, biology, material science, electrical and computer engineering, mechanical engineering, orthopaedics, and pathology & laboratory medicine. The research focus of the faculty ranges from nanostructured materials fabrication, study of properties, applications in sensors, energy, and biomedicine, and integration of the devices resulting in realization of nanosystems. As part of the INDI initiatives to developing new undergraduate and graduate track in nanotechnology, center members have been instrumental in the recent development of two interdisciplinary courses, Nanosystems Principles and Integrated Nanosystems Process & Devices which are now being offered by various departments. Moreover, INDI associated faculty members were recently awarded $200,000 from NSF Nanotechnology Undergraduate Education Program for integrating nanotechnology in engineering curricula at IUPUI. To increase the awareness in the community and promote recruitment of future students in nanotechnology, INDI is organizing workshops, offering short courses for industrial employees, and hosting summer camps for high school teachers and students. Summer of 2010 attracted more than 30 high school students for the Nanotechnology Discovery Summer Camp hosted by INDI at IUPUI. Moreover, this program has been extended to include a session for high school teachers in summer of 2011. The poster will summarize the mission, vision, faculty and center collaboration, research projects, achievements, and future plans of INDI.