First principles study of structural and thermodynamic properties of zirconia

Date
2014
Language
American English
Embargo Lift Date
Department
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

Due to their high melting temperature and low thermal conductivity, zirconia (ZrO2) based ceramics have been widely used for thermal barrier coating materials. This study investigates zirconia's properties using the first principles calculations. Structural properties, including band structure, density of state, lattice parameter, as well as elastic constants for both monoclinic and tetragonal zirconia were computed. Pressure based phase transition of tetragonal zirconia (t-ZrO2) was also calculated, based on tetragonal distortion and band structure under compressive pressures. The results predicted a transition from monoclinic structure to a fluorite-type cubic structure at the pressure of 37 GPa. Moreover, monoclinic zirconia (m-ZrO2) thermodynamic property calculations were carried out. Temperature-dependent heat capacity, entropy, free energy, and the Debye temperature of monoclinic zirconia, from 0 to 1000 K, were computed and compared well with those reported in literature.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Zhang, Y., & Zhang, J. (2014). First Principles Study of Structural and Thermodynamic Properties of Zirconia. Materials Today: Proceedings, 1(1), 44-54.
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Source
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}